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In the construction of long span beam, the bridge is in linear with the requirement of the design alignment
is the key to ensure that the bridge is in a reasonable stress state, the safety of the bridge operation and the
beautiful appearance of the bridge. There are several parameters used Beam Size = 0.5 x 0.45 m, Column

size = 0.5 x 0.5 m, Column cross-section: Rectangular and Tower H shape. There are several applications

modal analysis;

brid
ridge control.

that require accurate models such as: earthquake or wind simulations, health monitoring and structural

1. Introduction

Studies of the dynamic effects on bridges subjected to moving masses are carried out ever since the primary railway bridges were in-built the first 19th century. Since

that point vehicle speed and vehicle mass to the bridge mass ratio are enhanced, leading to much larger dynamic effects. In current years, the concern in traffic

induced vibrations has been increasing because of overview of high speed vehicles, just like the TGV train in France and also the Shinkansen train in Japan with

speeds exceeding 300 km/h. The increasing dynamic effects aren't only imposing severe conditions upon bridge style however additionally upon vehicle style, so as

to provide a suitable level of comfort for the passengers. Cable stayed bridges date back several centuries; the system was employed by Egyptians for their sailing

ships. Quick Chinese folks used the cable-stayed system to construct suspension bridges out of hemp rope and iron chains.

Cable Stayed Bridge
Fig.1 Cable Stayed Bridge

Cable types

Different types of cables are used in cable-stayed bridges; their form and configuration depend on the way individual wires are assembled. The steel used for the

cables is stronger than ordinary steel. A strand is commonly composed of 7 wires, helically molded around a center wire; the wire diameter is between 3 and 7 mm.

The strands are carefully packed together and usually bounded with a helical strand.

Cables are the most vital parts in cable-stayed bridges; they carry the load from the structure to the tower and to the backstay cable anchorages. Additionally to high

tensile strength, they need to even have high fatigue resistance and corrosion protection.

1. Helically-wound galvanized strands.
Ultimate Tensile Stress ~ ou =670 MPa

Young Modulus E =165 000 MPa
2. Parallel wire strands. Ultimate Tensile Stress ou =1860 MPa
Young Modulus E =190 000 MPa

3. Strands of parallel wire cables.
Ultimate Tensile Stress ou =1 600 Mpa
Young Modulus E =200 000 MPa
4. Locked coil strands.
Ultimate Tensile Stress ou =1500 MPa
Young Modulus E =170 000 MPa
The Allowable Stress under dead load effect for the cables under dead load is:
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Each cable kind has benefits and drawbacks. As an example, secured coil strands have variable stress-strain behaviour and low fatigue strength at the sockets.
Therefore, they're less of times used. It’s higher to decide on a kind of cable wherever the modulus of elasticity is high and constant. The parallel wire strand is the

most commonly cable type.

2. METHOD

Selection of Study Area: Cable-stayed Bridge was considered for the area of research and study.

The Cable-stayed Bridge modelling and analysis is done in STAAD PRO software.

Staad-Pro

STAAD.PRO is the Structural analysis and Design Software established by Bentley System Inc. founded by Mr. Keith A. Bentley in conjunction with his brother Mr.
Barry J.Bentley in 1984. The present version of STAAD-pro is STAAD-pro V8i is one of the most awaited structural analysis and design software. It has the
provision for steel works, concrete design codes. It is used to analyses various structural forms from the traditional static analysis, p-delta analysis and geometrical
non-linear analysis.

Modelling of Bridge

Steps for modelling cable stayed bridge in Staad Pro are as follows:-

. Defining Material

. Sectional properties

. Tower modelling

. Boundary condition input- End support at both ends are simply supported whereas base of pylon is fixed

. Loading condition input based on type of analysis

. Finding initial pretension force in cables

. Defining Construction stages

Load considered

. Dead load

. Live load

. Seismic load (zone 4)

Considered input parameters in the present study

. Beam Size =0.5x0.45m

. Column size=0.5x0.5m

. Column cross-section: Rectangular

. Tower H shape

Erection stress

Erection stresses are encouraged by the equipment used while construction of the bridge. These can be repelled by providing appropriate supports regarding the
members under load. In the present study the erection stresses are calculated analytically and result graphs are plotted.

Relaxation

Relaxation is defined because the loss of stress during a stressed material control at constant length. Another manifestation of identical basic phenomenon, creep,
is outlined because the modification long of a material under stress. Since no usually satisfactory quantitative relationship between creep and relaxation has been
developed, relaxation tests ought to be allotted whenever relaxation data are required, though creep tests are easier to perform.

Relaxation characteristics of pre-stressing reinforcement are of interest in pre-stressed concrete construction, though pure relaxation does not exist underneath
sensible conditions. Creep and shrinkage of the concrete and fluctuations in superimposed load modification the length of the tendon. All the same, the tendon doesn't
deform freely and therefore the stress in it wills modification. Thus, the conditions are comparable a lot of to a relaxation test than to a creep test.

The attitude toward the impact of relaxation has modified significantly over the last 20 years. At first, relaxation losses were thought-about to be quite essential as
a result of the affected the operating stresses that governed the design.

At identical time, it had been thought that the reinforcement reached a stable stress during a matter of many weeks if not hours which the relaxation losses were
restricted to a very little fraction of the initial stress.

The maximum tensile stress throughout prestressing (fpi) shall not exceed 80t%of the characteristic strength.

fpi<0.8fpk

The stress versus strain behaviour of prestressing steel under uniaxial tension is at the start linear (stress is proportional to strain) and elastic (strain is recovered at
unloading).

Beyond regarding 70th of the last word strength the behaviour becomes nonlinear and inelastic. There’s no defined yield purpose.
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Characteristic curve

—— Design curve
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Fig.2 Characteristic and design stress-strain curves

3. RESULT AND DISCUSSION

Complete modelling and analysis of Cable-stayed Bridge is done in STAAD PRO software.
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Fig.3 Design of Proposed Bridge

Beam Size = 0.5x0.45m
Columnsize=0.5x0.5m
Column cross-section: Rectangular

Tower H shape
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Fig.6 15 m span Fig.7 20 m span

Fig.8 25 m span Fig.9 30 m span
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Fig.13 Cable forces applied on 5 m span
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Fig.14 Cable forces applied on 10 m span
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Fig.16 Cable forces applied on 20 m span
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Fig.17 Cable forces applied on 25 m span
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Fig.18 Cable forces applied on 30 m span
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Fig.19 Cable forces applied on 35 m span
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Fig.20 Cable forces applied on 40 m span
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Fig.21 Cable forces applied on 45 m span

Table 1 Cable forces on different span

Cable forces (KN) Span (m)
3818.091 5
3818.091 10

4196.00 15
5248.12 20
6300.29 25
7353.45 30
8407.75 35
9463.31 40
10520.23 45

Table 2 Erection Stress

Erection stress (N/mm?) Erection stress (N/mm?) Span (m)
(Min) (Max)
3.0012 36.7805 5
2.2762 34.624 10
2.3411 34.628 15
2.4076 34.632 20
2.4069 34.632 25
2.3748 36.780 30
2.3387 34.627 35
2.30629 34.625 40
2.27699 34.624 45
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Fig.22 Erection stress on 5 m span Fig.23 Erection stress on 10 m span
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Fig.24 Erection stress on 20 m span Fig.25 Erection stress on 25 m span
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Fig.26 Erection stress on 30 m span
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Fig.28 Erection stress on 40 m span Fig.29 Erection stress on 45 m span

4. CONCLUSION

In this paper modelling design and Analysis of a Cable-stayed Bridge on STAAD.PRO software. The cable-stayed bridge is a bridge type which is common
application today with larger applicable scope of span, and good-looking appearance. After half a century, the technology of cable-stayed bridge got unprecedented
development. In the analysis of Cable Bridge on STAAD PRO software cable forces of 5m span is -332.625KN is minimum and 3818.091KN is maximum. After
that erection stress of 5m span is 3.0012N/mm? is minimum and 36.7805N/mm?.
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